pyEdgeEval.edge_tools package¶
Submodules¶
pyEdgeEval.edge_tools.mask2edge_loop module¶
pyEdgeEval.edge_tools.mask2edge_mp module¶
NOTE: not much speed ups probably because allocating memory is slower than the gain from multiprocessing
Might be beneficial when each worker has more things to do…
TODO: - add thin
pyEdgeEval.edge_tools.transforms module¶
Mask2Edge transform module.
- pyEdgeEval.edge_tools.transforms.mask2edge(run_type: str, instance_sensitive: bool, **kwargs)[source]¶
mask2edge function
- Parameters
run_type (str) – can choose between
loop
ormp
whereloop
loops over the classes whilemp
usesmultiprocessing
.instance_sensitive (bool) – set to
True
if generating instance-aware edges.mask (np.ndarray) – input one-hot mask
inst_mask (np.ndarray) – instance mask (required for instance sensitive)
inst_labelIds (List[int]) – labels that have instances
ignore_indices (List[int]) – ignore indices (corresponds to order of labelIds)
radius (int) – edge radius (thickness)
use_cv2 (bool) – whether to use
cv2
distance transform (defaultTrue
)quality (int) – default 0
- Returns
np.ndarray – generated edges.
- Raises
ValueError – if
run_type
is not set correctly.
Module contents¶
- class pyEdgeEval.edge_tools.Mask2Edge(labelIds, ignore_indices=[], label2trainId=None, radius: int = 2, use_cv2: bool = True, quality: int = 0)[source]¶
Bases:
object
Transform function
…
- LABEL_IDS = None¶
- label2trainId = None¶
- class pyEdgeEval.edge_tools.InstanceMask2Edge(inst_labelIds, **kwargs)[source]¶
Bases:
Mask2Edge
Transform function (instance sensitive)
- pyEdgeEval.edge_tools.mask2edge(run_type: str, instance_sensitive: bool, **kwargs)[source]¶
mask2edge function
- Parameters
run_type (str) – can choose between
loop
ormp
whereloop
loops over the classes whilemp
usesmultiprocessing
.instance_sensitive (bool) – set to
True
if generating instance-aware edges.mask (np.ndarray) – input one-hot mask
inst_mask (np.ndarray) – instance mask (required for instance sensitive)
inst_labelIds (List[int]) – labels that have instances
ignore_indices (List[int]) – ignore indices (corresponds to order of labelIds)
radius (int) – edge radius (thickness)
use_cv2 (bool) – whether to use
cv2
distance transform (defaultTrue
)quality (int) – default 0
- Returns
np.ndarray – generated edges.
- Raises
ValueError – if
run_type
is not set correctly.
- pyEdgeEval.edge_tools.loop_mask2edge(mask, ignore_indices, radius, thin=False, use_cv2=True, quality=0)[source]¶
mask2edge with looping
- pyEdgeEval.edge_tools.loop_instance_mask2edge(mask, inst_mask, inst_labelIds, ignore_indices, radius, thin=False, use_cv2=True, quality=0)[source]¶
mask2edge with looping (instance sensitive)