#!/usr/bin/env python3
"""Credit to: @joefutrelle
https://gist.github.com/joefutrelle/562f25bbcf20691217b8
"""
import numpy as np
from scipy import ndimage as ndi
# lookup tables for bwmorph_thin
# fmt: off
G123_LUT = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0,
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1,
0, 0, 0], dtype=bool)
G123P_LUT = np.array([0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,
1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0,
0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0], dtype=bool)
# fmt: on
[docs]def bwmorph_thin(image, n_iter=None):
"""
Perform morphological thinning of a binary image
Args:
image (np.ndarray): The image to be thinned (binary (M, N) ndarray).
n_iter (Optional[int]): Regardless of the value of this parameter,
the thinned image is returned immediately if an iteration produces
no change.
If this parameter is specified it thus sets an upper bound on
the number of iterations performed.
Returns:
out (np.ndarray): Thinned image (ndarray of bools).
See Also:
skeletonize
Notes:
This algorithm `[1]`_ works by making multiple passes over the image,
removing pixels matching a set of criteria designed to thin
connected regions while preserving eight-connected components and
2 x 2 squares `[2]`_. In each of the two sub-iterations the algorithm
correlates the intermediate skeleton image with a neighborhood mask,
then looks up each neighborhood in a lookup table indicating whether
the central pixel should be deleted in that sub-iteration.
References:
.. _[1]: Z. Guo and R. W. Hall, "Parallel thinning with
two-subiteration algorithms," Comm. ACM, vol. 32, no. 3,
pp. 359-373, 1989.
.. _[2]: Lam, L., Seong-Whan Lee, and Ching Y. Suen, "Thinning
Methodologies-A Comprehensive Survey," IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol 14, No. 9,
September 1992, p. 879
Examples:
>>> square = np.zeros((7, 7), dtype=np.uint8)
>>> square[1:-1, 2:-2] = 1
>>> square[0,1] = 1
>>> square
array([[0, 1, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
>>> skel = bwmorph_thin(square)
>>> skel.astype(np.uint8)
array([[0, 1, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
"""
# check parameters
if n_iter is None:
n = -1
elif n_iter <= 0:
raise ValueError("n_iter must be > 0")
else:
n = n_iter
# check that we have a 2d binary image, and convert it
# to uint8
skel = np.array(image).astype(np.uint8)
if skel.ndim != 2:
raise ValueError("2D array required")
if not np.all(np.in1d(image.flat, (0, 1))):
raise ValueError("Image contains values other than 0 and 1")
# neighborhood mask
mask = np.array([[8, 4, 2], [16, 0, 1], [32, 64, 128]], dtype=np.uint8)
# iterate either 1) indefinitely or 2) up to iteration limit
while n != 0:
before = np.sum(skel) # count points before thinning
# for each subiteration
for lut in [G123_LUT, G123P_LUT]:
# correlate image with neighborhood mask
N = ndi.correlate(skel, mask, mode="constant")
# take deletion decision from this subiteration's LUT
D = np.take(lut, N)
# perform deletion
skel[D] = 0
after = np.sum(skel) # coint points after thinning
if before == after:
# iteration had no effect: finish
break
# count down to iteration limit (or endlessly negative)
n -= 1
return skel.astype(np.bool)
"""
# here's how to make the LUTs
def nabe(n):
return np.array([n>>i&1 for i in range(0,9)]).astype(np.bool)
def hood(n):
return np.take(nabe(n), np.array([[3, 2, 1],
[4, 8, 0],
[5, 6, 7]]))
def G1(n):
s = 0
bits = nabe(n)
for i in (0,2,4,6):
if not(bits[i]) and (bits[i+1] or bits[(i+2) % 8]):
s += 1
return s==1
g1_lut = np.array([G1(n) for n in range(256)])
def G2(n):
n1, n2 = 0, 0
bits = nabe(n)
for k in (1,3,5,7):
if bits[k] or bits[k-1]:
n1 += 1
if bits[k] or bits[(k+1) % 8]:
n2 += 1
return min(n1,n2) in [2,3]
g2_lut = np.array([G2(n) for n in range(256)])
g12_lut = g1_lut & g2_lut
def G3(n):
bits = nabe(n)
return not((bits[1] or bits[2] or not(bits[7])) and bits[0])
def G3p(n):
bits = nabe(n)
return not((bits[5] or bits[6] or not(bits[3])) and bits[4])
g3_lut = np.array([G3(n) for n in range(256)])
g3p_lut = np.array([G3p(n) for n in range(256)])
g123_lut = g12_lut & g3_lut
g123p_lut = g12_lut & g3p_lut
"""